

Activit

y:

1680

Ignor

e

Confidential Transactions, Content privacy for Bitcoin transactions
June 09, 2015, 10:18:56 AM

 #1

I mentioned that I was using the new Borromean ringsig as a building block for a

larger cryptosystem, Here it is:

Confidential Transactions

One of the most powerful new features being explored in the Elements sidechain is

Confidential Transactions, a cryptographic tool to improve the privacy and security

of Bitcoin. This feature keeps the amounts transferred visible only to participants in

the transaction (and those they designate).

The security of the Bitcoin ledger is made possible by universal verification: each

participant individually and autonomously verifies that each transaction is valid,

without trusting any third party. An unfortunate side effect is that all the

transaction data must be conspicuously public so it can be verified, which is at odds

with the normal expectation of privacy for traditional monetary instruments.

Insufficient financial privacy can have serious security and privacy implications for

both commercial and personal transactions. Without adequate protection, thieves

and scammers can focus their efforts on known high-value targets, competitors can

learn business details, and negotiating positions can be undermined. Since

publishing often requires spending money, lack of privacy can chill free

speech. Insufficient privacy can also result in a loss of fungibility--where some coins

are treated as more acceptable than others--which would further undermine

Bitcoin's utility as money.

Bitcoin partially addresses the privacy problem by using pseudonymous addresses.

If someone does not know which users own which addresses, the privacy impact is

reduced. But any time you transact with someone you learn at least one of their

addresses. From there, you can trace out other connected addresses and estimate

the values of their transactions and holdings. For example, suppose your employer

pays you with Bitcoin and you later spend those coins on your rent and groceries.

Your landlord and the supermarket will both learn your income, and could charge

you higher prices as your income changes or target you for theft.

There are existing deployed techniques that further improve privacy in Bitcoin (such

as CoinJoin, which merges the transaction history of users by making joint

payments), but the utility of these techniques is reduced by the fact that it's possible

https://bitcointalk.org/index.php?action=ignore;u=11425;topic=1085273;msg=11572844;sesc=8a358ee8c5d3dc73562d475a014d127b
https://bitcointalk.org/index.php?action=ignore;u=11425;topic=1085273;msg=11572844;sesc=8a358ee8c5d3dc73562d475a014d127b
https://bitcointalk.org/index.php?topic=1085273.msg11572844#msg11572844
https://bitcointalk.org/index.php?topic=1085273.msg11572844#msg11572844
https://bitcointalk.org/index.php?topic=1077994.0
https://bitcointalk.org/index.php?topic=1085271.0
https://bitcointalk.org/index.php?action=profile;u=11425
https://bitcointalk.org/index.php?topic=1085273.msg11572844#msg11572844

to track amounts.

There have been proposed cryptographic techniques to improve privacy in Bitcoin-

like systems, but so far all of them result in breaking "pruning" (section 7 of

Bitcoin.pdf) and result in participants needing a perpetually growing database to

verify new transactions, because these systems prevent learning which coins have

been spent. Most proposed cryptographic privacy systems also have poor

performance, high overhead, and/or require new and very strong (and less well

understood) cryptographic assumptions.

Confidential Transactions improves the situation by making the transaction amounts

private, while preserving the ability of the public network to verify that the ledger

entries still add up. It does this without adding any new basic cryptographic

assumptions to the Bitcoin system, and with a manageable level of overhead.

CT is possible due to the cryptographic technique of additively homomorphic

commitments. As a side-effect of its design, CT also enables the additional exchange

of private "memo" data (such as invoice numbers or refund addresses) without any

further increase in transaction size, by reclaiming most of the overhead of the CT

cryptographic proofs.

The technology behind Confidential Transactions

A high level technical primer

This work was originally proposed by Adam Back on Bitcointalk in his 2013

thread "bitcoins with homomorphic value". To build CT I had to implement several

new cryptosystems which work in concert, and invented a generalization of ring

signatures and several novel optimizations to make the result reasonably efficient.

The basic tool that CT is based on is a Pedersen commitment.

A commitment scheme lets you keep a piece of data secret but commit to it so that

you cannot change it later. A simple commitment scheme can be constructed using

a cryptographic hash:

 commitment = SHA256(blinding_factor || data)

If you tell someone only the commitment then they cannot determine what data you

https://bitcointalk.org/index.php?topic=305791.0

are committing to (given certain assumptions about the properties of the hash), but

you can later reveal both the data and the blinding factor and they can run the hash

and verify that the data you committed to matches. The blinding factor is present

because without one, someone could try guessing at the data; if your data is small

and simple, it might be easy to just guess it and compare the guess to the

commitment.

A Pedersen commitment works like the above but with an additional property:

commitments can be added, and the sum of a set of commitments is the same as a

commitment to the sum of the data (with a blinding key set as the sum of the

blinding keys):

 C(BF1, data1) + C(BF2, data2) == C(BF1 + BF2, data1 + data2) C(BF1, data1) -

C(BF1, data1) == 0

In other words, the commitment preserves addition and the commutative property

applies.

If data_n = {1,1,2} and BF_n = {5,10,15} then:

 C(BF1, data1) + C(BF2, data2) - C(BF3, data3) == 0

and so on.

Our specific Pedersen commitments are constructed using elliptic curve points. [The

reader need not understand elliptic curve cryptography, beyond accepting the black

box behaviors I describe here.]

Normally an ECC pubkey is created by multiplying a generator for the group (G) with

the secret key (x):

 Pub = xG

The result is usually serialized as a 33-byte array.

ECC public keys obey the additively homomorphic property mentioned before:

 Pub1 + Pub2 = (x1 + x2 (mod n))G.

(This fact is used by the BIP32 HD wallet scheme to allow third parties to generate

fresh Bitcoin addresses for people.)

The Pedersen commitment is created by picking an additional generator for the

group (which we'll call H) such that no one knows the discrete log for H with respect

to G (or vice versa), meaning no one knows an x such that xG = H. We can

accomplish this by using the cryptographic hash of G to pick H:

 H = to_point(SHA256(ENCODE(G)))

Given our two generators we can build a commitment scheme like this:

 commitment = xG + aH

Here x is our secret blinding factor, and a is the amount that we're committing

to. You can verify just using the commutative property of addition that all the

relationships given for an additively homomorphic commitment scheme hold.

The Pedersen commitments are information-theoretically private: for any

commitment you see, there exists some blinding factor which would make any

amount match the commitment. Even an attacker with infinite computing power

could not tell what amount you committed to, if your blinding factor was truly

random. They are computationally secure against fake commitment, in that you

can't actually compute that arbitrary mapping; if you can it means you can find the

discrete log of the generators with respect to each other, which means that the

security of the group is compromised.

With this tool in hand we can go and replace the normal 8-byte integer amounts in

Bitcoin transactions with 33-byte Pedersen commitments.

If the author of a transaction takes care in picking their blinding factors so that they

add up correctly, then the network can still verify the transaction by checking that

its commitments add up to zero:

 (In1 + In2 + In3 + plaintext_input_amount*H...) -

 (Out1 + Out2 + Out3 + ... fees*H) == 0.

This requires making the fees in a transaction explicit, but that's generally desirable.

The commitment and its checking are quite simple. Unfortunately, without additional

measures this scheme is insecure.

The problem is that the group is cyclic, and addition is mod P (a 256-bit prime

number that defines the order of the group). As a result, addition of large values can

'overflow' and behave like negative amounts. This means that a sums-to-zero

behavior still holds when some outputs are negative, effectively allowing the

creation of 5 coins from nothing:

 (1 + 1) - (-5 + 7) == 0

This would be interpreted as "someone spends two bitcoins, gets a '-5' bitcoin out

that they discard out, and a 7 bitcoin output".

In order to prevent this, when there are multiple outputs we must prove that each

committed output is within a range which cannot overflow (e.g. [0, 2^64)).

We could just disclose the amounts and blinding factors so that the network could

check, but this would lose all of the privacy. So, instead, we need to prove that a

committed amount is within the range but reveal nothing else about it: we need an

additional cryptosystem to prove the range of a Pedersen commitment. We use a

scheme similar to Schoenmakersâ€™ binary decomposition but with many

optimizations (including not using binary).

To build this we start with a basic EC signature. If a signature is constructed so that

the 'message' is the hash of the pubkey, the signature proves that the signer knew

the private key, which is the discrete log of the pubkey with respect to some

generator.

For a 'pubkey' like P = xG + aH, no one knows the discrete log of P with respect to G

because of the addition of H, because no one knows an x for xG = H----_unless_ a is

0. If a is zero then P = xG and the discrete log is just x; someone could sign for that

pubkey.

A pedersen commitment can be proven to be a commitment to a zero by just signing

a hash of the commitment with the commitment as the public key. Using the public

key in the signature is required to prevent setting the signature to arbitrary values

and solving for the commitment. The private key used for the signature is just the

blinding factor.

Going further, letâ€™s say I want to prove C is a commitment to 1 without telling

you the blinding factor. All you do is compute

 C' = C - 1H

and ask me to provide a signature (with respect to G) with pubkey C'. If I can do

that, the C must be a commitment to 1 (or else I've broken the EC discrete log

security).

To avoid giving away the amount we need yet another cryptographic construct: a

ring signature. A ring signature is a signature scheme where there are two (or

more) pubkeys and the signature proves that the signer knows the discrete log of at

least one of the pubkeys.

So with that we can construct a scheme where I prove a commitment that C is

either 0 or 1--we call this an "OR proof".

First, I give you C, and you compute C':

 C' = C - 1H

Then I provide a ring signature over {C, C'}.

If C was a commitment to 1 then I do not know its discrete log, but C' becomes a

commitment to 0 and I do know its discrete log (just the blinding factor). If C was a

commitment to 0 I know its discrete log, and I don't for C'. If it was a commitment

to any other amount, none of the result will be zero and I won't be able to sign.

This works for any pair of numbers, just by suitably pre-processing the amounts that

are put into the ring... or even for more than two numbers.

Say I want to prove to you that C is in the range [0, 32). Now that we have an OR

proof, imagine I send you a collection of commitments and OR proofs for each of

them:

C1 is 0 or 1 C2 is 0 or 2 C3 is 0 or 4 C4 is 0 or 8 C5 is 0 or 16.

If I pick the blinding factors for C1..5 correctly then I can arrange it so that C1 + C2

+ C3 + C4 + C5 == C. Effectively I have built up the number in binary, and a 5-bit

number can only be in the range [0,32).

Numerous optimizations are required to make this more efficient:

First, I propose a new ring signature formulation, a Borromean ring signature

 , which is especially efficient: it requires only 32 bytes per pubkey, plus 32

bytes which can be shared by many separate rings. This is has twice the

asymptotic efficiency of previously proposed constructions for this

application.

 https://github.com/Blockstream/borromean_paper/raw/master/borromean_d

raft_0.01_34241bb.pdf

Instead of expressing the amount directly, CT amounts are expressed using a

decimal floating point where the digits are multiplied by a base 10 exponent. This

means that you can prove large amounts with small proofs, so long as they have

few significant digits in base 10: e.g., 11.2345 and .0112345 can have the same

size proof, even though one number is a thousand times larger.

There is also a non-private "minimum amount" sent, which allows a smaller proof to

cover a larger range if the user doesn't mind leaking some information about the

minimum amount (which might already be public for external reasons); this also

allows the least significant digits to be non-zero when an exponent is used. Minimum

amounts are supported by first subtracting the minimum, then proving that the

result is non-negative.

The mantissa of the floating point is encoded using rings of size 4 (base 4) rather

than binary, because this minimizes the number of commitments sent while not

using any more signature data than base 2.

The final mantissa digit commitment can be skipped, backwards constructing it from

the value being proven and the other digits, etc.

Finally, by careful use of derandomized signing in the prover, it's possible for the

receiver of the coins--who shares a secret with the sender, due to ECDH key

agreement with the receivers pubkey--to 'rewind' the proof and use it to extract a

message sent by the sender which is 80% of the size of the proof. We use this to

signal the value and blinding factor to the receiver, but it could also be used to carry

things like reference numbers or refund addresses.

The result is that a proof for a 32-bit value is 2564 bytes, and simultaneously may

convey 2048 bytes of message. A 32-bit proof can cover a range of 42.94967296

BTC with 1e-8 precision, or 429.4967296 BTC with 1e-7 precision, and so on. My

implementation is able to verify over 1300 32-bit range proofs per second on an i7-

4770R, and there are many performance optimizations still possible.

The implementation supports proofs of any mantissa size or exponent, with the

parameters controlled by the sender. Performance and size are linear in the number

https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_34241bb.pdf
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_34241bb.pdf

of mantissa bits, and odd numbers of bits are supported (by switching to radix-2 for

the last digit).

In Elements, the range proofs are only required in cases where there are multiple

confidential value outputs (including fees). Transactions that merge multiple

confidential amounts into a single output do not need range proofs since the fact

that all the inputs were in range is sufficient.

By sharing the scanning key used to establish the shared secret used by the

rewindable range proofs, this approach is completely compatible with watching

wallets; users can share these keys with auditors to enable them to view their

transaction amounts.

Future work may use the fact that proofs can support a minimum value to also allow

skipping the range proofs when there is a single confidential output even when fees

are being paid, or allow nodes to skip or delay verifying most range proofs by using

fraud proofs.

The system presented here depends on no new fundamental cryptographic

assumptions, only the hardness of the discrete log problem in the secp256k1 group

and a random oracle assumption, just like the normal signatures in Bitcoin.

While the size of the range proofs are non-trivial, they are still an order of

magnitude smaller and faster to verify than some alternatives (like Zerocoin), and

most of their space can be reclaimed to communicate additional data between users,

a feature which is often requested but hard to justify in a public broadcast network.

Similar to signatures, the range proofs can be placed on separate tree branches in

blocks to allow clients that donâ€™t care about (e.g. historical ones) to skip

receiving them.

Most importantly, this scheme is compatible with pruning and does not make the

verification state for Bitcoin grow forever. It is also compatible with CoinJoin and

CoinSwap, allowing for transaction graph privacy as well while simultaneously fixing

the most severe limitation of these approaches to privacy (that transaction amounts

compromise their privacy).

Unlike some other proposals, this system is not just speculation or pure

cryptography without integration with the Bitcoin system.

Confidential Transactions is enabled in Elements and used by default by all ordinary

transactions.

https://bitcointalk.org/index.php?topic=1085271.0

The source code for the just the underlying cryptosystem is also available.

https://github.com/ElementsProject/secp256k1-zkp/commit/bd067945ead3b514fba884abd0de95fc4b5db9ae

